53. Acid-Catalyzed Cyclization Reactions of Substituted Acetylenic Ketones: A New Approach for the Synthesis of 3-Halofurans, Flavones, and Styrylchromones¹)

by Daniel Obrecht

Zentrale Forschungseinheiten, F. Hoffmann-La Roche & Co. AG, CH-4002 Basel

(23.I.89)

Acetylenic acetals of type I (*Scheme 1*) and acetylenic ketones of type III (*Scheme 1*), **37** and **38** (*Scheme 7*) are versatile synthetic precursors for the synthesis of various heterocycles by acid-catalyzed cyclization reactions. By this way, substituted 3-halofurans of type II and IV (*Scheme 1*) and flavones and styrylchromones (*Scheme 7*) can be synthesized in good-to-excellent yields. The high degree of regioselectivity in the synthesis of the 3-halofurans (*Scheme 4*) is the result of the regioselective β -addition of HX (X = Cl, Br, I) to the acetylenic aldehyde and acetylenic ketone moieties. A possible mechanism is depicted in *Scheme 5*. Since 3-halofurans can easily be metalated and substituted, this approach constitutes a new synthesis of highly substituted furans.

1. Introduction. – In the past, acetylenic ketones have been widely used as synthons in a variety of reaction types [1][2]. They have been shown to be excellent substrates for the β -addition of amines, thiols, sulfinic acids, phenols, and HBr [3][4]. Their ability to trap nucleophiles has also been used for the synthesis of heterocycles such as for example 4H-thiopyran-4-ones [5] and 1,5-benzodiazepines [6]. Acetylenic ketones are furthermore excellent dienophiles for *Diels-Alder* reactions, and they have also been used by *Karpf* and *Dreiding* to synthesize a number of cyclopentenone-containing natural products (' α -Alkynone Cyclization') [7]. Recently, we have shown that substituted acetylenic ketones are good precursors for the synthesis of (*E*)-3-acylprop-2-enoic acids [8]. We present in this paper the use of acetylenic ketones for the synthesis of a number of interesting heterocycles by acid-catalyzed cyclisations.

2. Synthesis of Substituted 3-Halofurans. – 2.1. General. Among the large family of furans [9], the 3-halofurans [10a-e] have considerable potential as synthetic tools [11][12]. Their use, however, is somewhat limited due to the lack of generally applicable synthetic methods for their preparation. Recently, *Reich* and *Olson* have published an interesting synthesis of 3-iodo-4-methylfuran [10e]. We now describe a novel general synthesis of substituted 3-halofurans of type II and IV by acid-catalyzed cyclization of the corresponding acetylenic acetals of type I and the acetylenic ketones of type III (*Scheme 1*).

1) Presented in part at the autumn meeting of the Swiss Chemical Society in Bern on October 21, 1988.

2.2. Synthesis of the Acetylenic Acetals of Type I and the Acetylenic Ketones of Type III. The synthesis of acetylenic acetals of type I was conveniently achieved in high yields by addition of the lithium acetylide of 3,3-diethoxyprop-1-yne (1; prepared by reaction of 1 with BuLi in THF at -78°) to the corresponding aldehyde V (see 2-4; Scheme 2 and Table 1 (Method A)) [13].

Aldehyde V	R [†]	Acetylenic acetal I	Yield [%] ^a)		
2	Ph	5	92		
3	$CH_3(CH_2)_4$	6	92		
4	$CH_3(CH_2)_7$	7	82		
^a) Yield of isolated	, analytically pure material.				

Table 1. Synthesis of the Acetylenic Acetals I by Method A

The acetylenic ketones of type III were prepared in two ways. Treatment of the tetrahydro-2*H*-pyranyl(THP)-protected propargyl alcohols of type VI (see 8 and 9) with BuLi at -78° , followed by addition of the aldehyde V, oxidation of the intermediate alcohols with MnO₂ in CH₂Cl₂ and deprotection of the THP group using pyridinium *p*-toluenesulfonate (PPTS) in EtOH at 50° gave III (see 13–15 and 17) in good overall yield without purification of the intermediates (*Scheme 3* and *Table 2* (*Method B*)). As an alternative method, we used the reaction of the unprotected propargyl alcohols of type VII (see 12) with 2.2 equiv. of BuLi in THF hexamethylphosphoramide (HMPA) at 0°

V or VIII	R ¹	Propargyl alcohol VI or VII	R ²	Acetylenic ketones III	Yield [%] ^a) 68
2	Ph	8	Н	13	
2	Ph	9	CH ₃	14	78
10	3,4,5-(MeO) ₃ C ₆ H ₂	8	Н	15	73
11	3,4,5-(MeO) ₃ C ₆ H ₂	12	CH_3	16	80
3	CH ₃ (CH ₂) ₄	9	CH ₃	17	72
^a) Isolated yie	eld, after purification by ch	romatography [13].			

Table 2. Synthesis of the Acetylenic Ketones III

followed by addition of the *N*-methoxy-*N*-methylamides of type VIII (see 11), to conveniently synthesize the acetylenic ketones of type III (see 16; *Scheme 3* and *Table 2*). In cases where the aldehyde V was easily available, we preferred *Method B* because of easier handling and generally slightly better overall yields.

2.3. Synthesis of the Substituted 3-Halofurans by Acid-Catalyzed Cyclization of I and III. The 3-halofurans of type II and IV (Scheme 1) were obtained by treatment of the acetylenic acetal I (see 5–7) and the acetylenic ketone III (see 13–16), respectively, with 2–4N aq. HX (X = Cl, Br, I) in dioxane (Method C), 2–4N aq. HX in toluene (Method D), or 33% HBr/AcOH in CH₂Cl₂ (Method E) at temperatures ranging from 0 to 50° (Table 3). Usually, toluene gave very clean reactions and is, therefore, the solvent of choice for these cyclizations. Furthermore, the 2N aq. HI was purified by treatment with H₃PO₂[14] to remove traces of I₂ in order to avoid the formation of diiodinated products. As it can be seen from Table 3, the yields were generally good-to-excellent. It is interesting to note that the yields were not very much dependent on the substituents R¹ and R² as long as they were compatible with the dilute aq. acid conditions. The presented strategy allows to synthesize regioselectively the isomeric 2- and 5-substituted 3-halofurans as shown in Scheme 4 for R¹ = Ph.

Sta I	rting or	g material III	Method	Temp. [°C]	Time [h]	3-h II	alofu or	rans of type IV	x	R ¹	R ²	Yield [%]ª)
5			С	50	24	18			Br	Ph		60
5			D	50	2	18			Br	Ph		93
6			С	40	3.5	19			Br	$CH_3(CH_2)_4$		82(97)
7			С	50	6	20			Br	$CH_3(CH_2)_7$		76(99)
7			Ε	0-r.t.	0.5	20			Br	$CH_3(CH_2)_7$		86
7			С	50	4	21			Cl	$CH_3(CH_2)_7$		72(96)
		13	D	50	3			22	Br	Ph	Н	95
		13	D	r.t.	4			23	Ι	Ph	н	77
		14	С	50	4.5			24	Cl	Ph	CH_3	91
		14	С	50	8			25	Br	Ph	CH ₃	92
		14	С	50	0.5			26	I	Ph	CH ₃	91
		15	С	50	4			27	Cl	3,4,5-(MeO) ₃ C ₆ H ₂	н	86
		15	С	50	2.5			28	Br	3,4,5-(MeO ₃)C ₆ H ₂	Н	93
		16	С	50	15			29	Cl	3,4,5-(MeO) ₃ C ₆ H ₂	CH ₃	81
		16	С	50	20			30	Br	3,4,5-(MeO) ₃ C ₆ H ₂	CH ₃	82
		16	С	50	0.5			31	I	$3,4,5-(MeO)_{3}C_{6}H_{2}$	CH ₃	88
		17	D	50	4			32	Br	$CH_3(CH_2)_4$	CH ₃	81
		17	С	r.t.	1			33	Ι	CH ₃ (CH ₂) ₄	CH ₃	76

Table 3. Synthesis of the 3-Halofurans II and IV

^a) Isolated yield, after chromatography [13] and bulb-to-bulb distillation or crystallization as indicated in the *Exper. Part* (yields in parentheses are based on chromatographed material).

Scheme 4

2.4. Mechanistic Aspects. To explain the outcome of these reactions, we postulate that the acetylenic acetal I is first hydrolyzed to the acetylenic aldehyde IX. The latter or the acetylenic ketone III is then regioselectively attacked by HX giving rise to a mixture of (E)- and (Z)-products of type X-XIII (Scheme 5). The (E)-isomers X and XII afford, after cyclization and dehydration, the products II and IV, respectively. Interconversion of (E)- and (Z)-isomers appears to be rapid under the reaction conditions, since the (Z)-addition products XI and XIII were the only by-products isolated, when the reactions were stopped before completion. This fact is also a strong indication that the intermediate addition products X-XIII are not further hydrolyzed to β -diketones. It is noteworthy that the observed position of X in II and IV is completely controlled by the acetylenic aldehyde and acetylenic ketone moieties.

3. Synthesis of Flavones and Styrylchromones. -3.1. General. During the course of our investigations to find further interesting applications of acid-catalyzed cyclizations of substituted acetylenic ketones, we turned our attention to an interesting publication of Vereshchagin and coworkers, who cyclized the acetylenic ketones of type XIV to 4H-pyran-4-ones of type XV using conc. H_2SO_4 in aq. EtOH (Scheme 6) [15]. We have shown now that the reaction of 5-hydroxy-5-methylhex-2-ynophenone (34) with 4N aq. HBr in dioxane (1:3) for 2.5 h at 90° gave a 95% yield of the 4H-pyran-4-one 35 (Scheme 6). This comparison shows that the use of HBr is clearly superior to H_2SO_4 for these cyclizations.

Scheme 6

As an extension of these cyclizations, we describe a new approach to flavones and styrylchromones (*Scheme 7*). Cyclization of the substituted acetylenic ketones **37** and **38** using aq. HBr should lead to flavone **39** and styrylchromone **40** (*Scheme 7*).

3.2. Synthesis of the Acetylenic Ketones **37** and **38**. Acetylenic ketones **37** and **38** were synthesized by treatment of 2-(2-ethynylphenoxy)-3,4,5,6-tetrahydro-2H-pyran (**36**) [16] according to Method B with aldehydes of type V (Scheme 7).

3.3. Cyclizations. The acetylenic ketones **37** and **38** were treated with 4N aq. HBr in dioxane (1:3) at 80° for 2 h to yield 3',4',5'-trimethoxyflavone (**39**, 80%) and 2-styryl-4H-[1]benzopyran-4-one (**40**, 82%), respectively.

As we demonstrated for the synthesis of 3-halofurans, these cyclizations tolerate a wide range of substituents R^1 and R^2 (*Scheme 7*). Applications toward pharmacologically interesting styrylchromones [17] will be published later.

4. Conclusions. – This work shows that substituted acetylenic acetals of type I and acetylenic ketones of type III (Scheme 1) are excellent cyclization precursors for the synthesis of various substituted 3-halofurans of type II and IV in high yields. It is worth to point out that, by this method, the previously hardly known class of 2-substituted 3-halofurans of type II now has become readily accessible. Since 3-bromo- and 3-iodo-furans can be metalated and substituted [11], the present work constitutes a novel general synthesis of highly substituted furans. Moreover, cyclizations of substituted acetylenic ketones 37 and 38 allow a new entry into flavones and styrylchromones in good yields (Scheme 7). Further applications of this type of cyclizations for the synthesis of other interesting heterocycles will be reported in due course.

We wish to thank our colleagues from the Central Research Units, F. Hoffmann-La Roche & Co. AG for IR (Mr. A. Bubendorf), NMR (Dr. W. Arnold), mass spectra (Dr. W. Vetter and Mr. W. Meister), and elemental analyses (Dr. W. Dirscherl). We thank also Dr. Max Schmid, Prof. H.-J. Hansen, Dr. A. Knierzinger, and especially Dr. Rudolf Schmid for fruitful discussions.

Experimental Part

(The author likes to thank Mr. O. Heitzelmann for his excellent work and enthusiasm.)

General. All reactions with air – or moisture – sensitive reactants and solvents were carried out in oven – or flame-dried glassware under a positive pressure of dry Ar. Reaction solvents and liquid reagents were purified by distillation shortly before use. THF was distilled under Ar from Na with benzophenone ketyl as indicator. CH_2Cl_2 was distilled from powdered CaH₂. All other reactants were 'reagent-grade' unless described otherwise. Anal. TLC: 2.5×10 cm precoated TLC plates, SiO₂ 60F-254, layer thickness 0.25 mm (*E. Merck & Co.*, Darmstadt, FRG). Flash chromatography (FC): *E. Merck* SiO₂ 60 (230-400 mesh ASTM) according to [13]. M.p.: *Büchi-SMP-20* apparatus, uncorrected. IR: *Nicolet 7199 FT-IR* spectrometer; solids in KBr pellets, liquids as thin films; characteristic bands in cm⁻¹. ¹H-NMR: at 250 MHz, *Bruker-AC-250* apparatus, TMS as internal standard; chemical shifts of signal centres and ranges in ppm (δ), *J* in Hz.

1. General Procedures. -1.1. *Method A*. To a stirred soln. of 1.43 ml (10.0 mmol) of 3,3-diethoxyprop-1-yne (1; *Fluka*) in THF (30 ml), 6.88 ml (11.0 mmol) of BuLi soln. (1.6M in hexane) were added at -78° . The mixture was stirred for 30 min at -78° , followed by addition of 11.0 mmol of freshly distilled aldehyde V at -78° . The mixture was stirred for 2 h at -78° , allowed to warm to -40° , and quenched with sat. NaHCO₃ soln. (50 ml), ice (50 g), and Et₂O 100 ml). The aq. layer was extracted with Et₂O (2 × 50 ml), the combined org. fractions were washed with sat. brine (50 ml), dried (MgSO₄), and the solvents were removed. The residue was chromatographed on SiO₂ (80 g) with Et₃O/hexane 1:2 and further purified by bulb-to-bulb distillation under reduced pressure.

1.2. Method B. To a stirred soln. of 10.0 mmol of the THP-protected propargylic alcohol VI in THF (30 ml), 6.88 ml (1.1 equiv.) of BuLi soln. (1.6M in hexane) were added at -78° . The mixture was stirred for 30 min at -30° , followed by addition of 11.0 mmol of the aldehyde V at -78° . The mixture was stirred for 30 min at -78° , allowed to slowly warm up to 0°, and stirred for 30 min at 0°, and poured into Et₂O (50 ml)/sat. NH₄Cl soln. (30 ml) and ice (50 g). The aq. layer was extracted with AcOEt (2 × 50 ml), the combined org. fractions were washed with sat. brine (2 × 50 ml), dried (MgSO₄), and the solvents removed. The residue was dissolved in CH₂Cl₂ (10 ml) and added to a mechanically stirred suspension of MnO₂ (80 g) in CH₂Cl₂ (50 ml) at 0°. The mixture was stirred for 45 min at 0°, filtered through MgSO₄ (20 g) and the solvents were removed. To the residue in EtOH (50 ml), 0.5 g of PPTS were was diluted with H₂O (50 ml) and AcOEt (80 ml). The aq. phase was extracted with AcOEt (2 × 50 ml), the combined org. fractions were removed. The residue was discovents were removed. The residue was discovents were removed. The residue was discovent to (2 × 50 ml), 0.5 g of PPTS were was diduct at r.t., and the mixture was stirred at 50°, until no more V was detectable by TLC (1–2.5 h). The cold mixture was diluted with H₂O (50 ml) and AcOEt (80 ml). The aq. phase was extracted with AcOEt (2 × 50 ml), the combined org. fractions were washed with sat. brine (2 × 50 ml², dried, and the solvents were removed. The residue was chromatographed on SiO₂ (80 g) and crystallized from AcOEt hexane as indicated.

1.3. Method C. To a stirred soln. of 10.0 mmol of the acetylenic acetal I or acetylenic ketone III in dioxane (30 ml), 2–4N aq. HX (10 ml) was added at r.t. The mixture was stirred at r.t. to 50° as indicated in Table 3, cooled to r.t., diluted with Et₂O or AcOEt (100 ml), and poured onto ice (50 g). The aq. phase was extracted with Et₂O or AcOEt (100 ml), the combined org. fractions were washed with sat. brine (50 ml) and the solvents removed. The residue was chromatographed on SiO₂ (80 g), distilled under reduced pressure (bulb-to-bulb) or crystallized as indicated.

1.4. Method D. Same procedure as Method C, exept that toluene was used as solvent instead of dioxane.

1.5. Method E. To a stirred soln. of 10.0 mmol of the acetylenic acetal I or the acetylenic ketone III in CH_2Cl_2 (50 ml), a soln. of 33% HBr/AcOH (4 ml) in CH_2Cl_2 (5 ml) was added at 0°. The mixture was stirred for 1 h at 0°, allowed to warm up to r.t., and quenched with sat. NaHCO₃ soln. (30 ml), ice (50 g), and Et₂O (100 ml). The org. phase was washed with sat. brine (75 ml), dried (MgSO₄) and the solvents were removed. The residue was purified as described in *Method C*.

2. Acetylenic Acetals I. – 2.1. (\pm) -4-Hydroxy-4-phenylbut-2-ynal Diethyl Acetal (5) [18a]. A soln. of 6.54 g (51.0 mmol) of 1 in THF was treated according to Method A with 5.95 g (1.1 equiv.) of benzaldehyde (2): 11.0 g (92%) of 5 as a colorless oil after FC. IR (film): 3417w, 2977m, 2868w, 1495w, 1453w, 1328w, 1136s, 1050s, 1014s, 699m. ¹H-NMR (CDCl₃, 250 MHz): 7.6–7.5, 7.45–7.3 (2m, 5 arom. H); 5.53 (br. d, J = 6.2, H–C(4)); 5.36 (d, J = 1.4, H–C(1)); 3.85–3.55 (m, (CH₃CH₂O)₂CH); 2.32 (d, J = 6.2, OH); 1.3–1.15 (m, (CH₃CH₂O)₂CH). MS: 233 (2, M^+ – H), 189 (76), 133 (79), 115 (100), 105 (36), 103 (32), 77 (48), 55 (48). Anal. calc. for C₁₄H₁₈O₃ (234.30): C 71.77, H 7.74; found: C 71.64, H 7.73.

2.2. (\pm) -4-Hydroxynon-2-ynal Diethyl Acetal (6) [18b]. A soln. of 15.0 ml (0.105 mol) of 1 in THF was treated according to Method A: 22.0 g (92%) 6 after bulb-to-bulb distillation (160°/12 Torr). IR (film): 3421w, 2932s, 2871m, 2235w, 1460w, 1357w, 1328m, 1148s, 1118m, 1052s, 1011m. ¹H-NMR (CDCl₃, 250 MHz): 5.31 (d, J = 1.2, H–C(1)); 4.5–4.3 (m, J = 6.6, H–C(4)); 3.85–3.5 (m, (CH₃CH₂O)₂CH); 1.99 (d, J = 6.6, OH); 1.8–1.65, 1.55–1.25 (2m, 6 aliph. H); 1.24 (t, J = 7.2, (CH₃CH₂O)₂CH); 0.95–0.85 (m, 3 aliph. H). MS: 227 (2, M^{+-} H), 183 (33), 109 (25), 85 (47), 67 (29), 57 (100), 55 (47), 43 (51).

2.3. (\pm) -4-Hydroxydodec-2-ynal Diethyl Acetal (7) [18c]. A soln. of 20.0 ml (0.14 mol) of 1 in THF was treated according to *Method A* with **4** (*Fluka*): 31.8 g (82.2%) of 7 as a colorless liquid after bulb-to-bulb distillation (138°/0.1 mbar). IR (film): 3431w, 2927w, 2856m, 2220w, 1720w, 1450w, 1327w, 1145m, 1119m, 1053s, 1011w. ¹H-NMR (CDCl₃, 250 MHz): 5.31 (d, J = 1.3, H-C(1)); 4.5-4.4 (m, H-C(4)); 3.85–3.55 ($m, (CH_3CH_2O)_2CH$); 1.88 (br. d, J = 6.0, OH); 1.8–1.7 (m, 2 H-C(5)); 1.55–1.15 (m, 14 aliph. H); 0.95–0.85 (m, 3 H-C(12)). MS: 269 (3, $M^{++} - H$), 225 (95), 95 (43), 85 (99), 57 (100). Anal. calc. for C₁₆H₃₀O₃ (270.41): C 71.07, H 11.18; found: C 71.23, H 11.36.

3. Acetylenic Ketones III. – 3.1. 4-Hydroxybut-2-ynophenone (13). A soln. of 19.8 g (0.141 mol) of **8** in THF was treated according to *Method B* to yield, after FC on SiO₂ with AcOEt/hexane 1:3, 10.75 g (68%) of **13** as a pale yellow oil. IR (film): 3416m (br.), 2895w, 2231m, 1643s, 1597s, 1450s, 1315s, 1267s, 1177m, 1102s, 1023s, 901m. ¹H-NMR (CDCl₃, 250 MHz): 8.2–8.05, 7.7–7.4 (2m, 5 arom. H); 4.58 (d, J = 6.4, 2 H-C(4)); 2.39 (t, J = 6.4, OH).

MS: 160 (100, M^{++}), 131 (84), 105 (55), 77 (82), 51 (44). Anal. calc. for C₁₀H₈O₂ (160.17): C 74.99, H 5.03; found: C 74.44, H 5.02.

3.2. (\pm) -4-Hydroxypent-2-ynophenone (14). A soln. of 21.8 g (0.143 mol) of 9 in THF was treated according to *Method B* with 2 to yield, after FC on SiO₂ with AcOEt/hexane 1:3, 19.43 g (78%) of 14 as a pale yellow oil. IR (film): 3410m (br.), 2985w, 2222w, 1644s, 1597m, 1450m, 1314m, 1266s, 1130m, 1082w, 1012m. ¹H-NMR (CDCl₃, 250 MHz): 8.2–8.1, 7.7–7.45 (2m, 5 arom. H); 4.9–4.8 (m, H–C(4)); 2.33 (d, J = 5.6, OH); 1.62 (d, J = 5.6, CH₃–C(4)). MS: 174 (22, M^{++}), 159 (15), 131 (100), 105 (51), 77 (54), 53 (44). Anal. calc. for C₁₁H₁₀O₂ (174.20): C 75.84, H 5.79; found: C 75.60, H 5.91.

3.3. 4-Hydroxy-3',4',5'-trimethoxybut-2-ynophenone (15). A soln. of 10.0 g (71.3 mmol) of 8 in THF was treated according to Method B with 3,4,5-trimethoxybenzaldehyde (10, Fluka): 13.0 g (73%) of 15 after recrystallization from AcOEt/hexane. M.p. 104–105°. IR (KBr): 3380m (br.), 2940w, 2840w, 2240w, 1630s, 1580m, 1505m, 1420m, 1340s, 1230s, 1130s, 1005m, 750m. ¹H-NMR (CDCl₃, 250 MHz): 7.38 (s, 2 arom. H); 4.57 (br. s, 2 H–C(4)); 3.94, 3.93 (2s, 3 CH₃O); 2.37 (br. s, OH). MS: 250 (100, M^+), 235 (40). Anal. calc. for C₁₃H₁₄O₅ (250.25): C 62.39, H 5.64; found: C 62.43, H 5.80.

3.4. (\pm) -4-Hydroxy-3',4',5'-trimethoxypent-2-ynophenone (16). To a soln. of 0.66 g (9.42 mmol) of but-3-yn-2ol (12) in THF (20 ml) and HMPA (6 ml), 12.55 ml BuLi soln. (1.6M in hexane) were added at -78° . The mixture was allowed to warm up to 0° and stirred at 0° for 1 h. To the mixture, a soln. of 2.0 g (7.83 mmol) of N, 3,4,5-tetramethoxy-N-methylbenzamide (11) [8] in THF (20 ml) was added at -40° . The mixture was stirred at -40° for 30 min, slowly warmed up to r.t., stirred at r.t. for 1 h, and quenched with a mixture of ice (20 g) 0.5N aq. HCl (10 ml) Et₂O (100 ml). The org. phase was washed with H₂O (2 × 40 ml), the combined aq. phase extracted with Et₂O (50 ml), the combined org. fractions were washed with sat. brine (2 × 50 ml), dried (MgSO₄) and the solvents removed. The residue was chromatographed on SiO₂ (100 g) with AcOEt/hexane 1:1 and crystallized from AcOEt/hexane affording 1.65 g (80%) of 16 as a pale yellow solid. M.p. 77–79°. IR (KBr): 3460m (br.), 2975w, 2940w, 2215m, 1688m, 1580s, 1500m, 1420m, 1335s, 1220s, 1180m, 1130s, 995m, 750m. ¹H-NMR (CDCl₃, 250 MHz): 7.39 (s, 2 arom. H); 4.9–4.75 (m, J = 5.6, H–C(4)); 3.95, 3.93 (2s, 3 CH₃O); 2.31 (d, J = 5.6, OH); 1.61 (d, J = 5.6, CH₃–C(4)). MS: 264 (100, M^+), 249 (34), 53 (16), 43 (21). Anal. calc. for C₁₄H₁₆O₅ (264.28): C 63.63, H 6.10; found: C 63.54, H 6.18.

3.5. (\pm) -2-Hydroxydec-3-yn-5-one (17). A soln. of 23.1 g (0.15 mol) of 9 in THF was treated according to *Method B* with 3 affording, after FC on SiO₂ with AcOEt/hexane 1:2, 18.17 g (72%) of 17 as a pale yellow oil. IR (film): 3406*m* (br.), 2933*m*, 2870*m*, 2215*m*, 1676*s*, 1458*w*, 1404*w*, 1371*w*, 1235*w*, 1163*m*, 1086*w*, 1038*w*. ¹H-NMR (CDCl₃, 250 MHz): 4.69 (*q*, J = 5.6, H-C(2)); 2.56 (*t*, J = 7.3, 2 H-C(6)); 2.18 (*d*, J = 5.6, OH); 1.8–1.55 (*m*, 2H-C(7)); 1.52 (*d*, J = 5.6, CH₃-C(2)); 1.45–1.2 (*m*, 4 aliph. H); 1.0–0.85 (*m*, 3 aliph. H). MS: 153 (1, M^{+-} CH₃), 112 (31), 97 (100), 69 (22), 53 (62), 43 (60). Anal. calc. for C₁₀H₁₆O₂ (168.24): C 71.39, H 9.59; found: C 70.96, H 9.70.

4. 3-Halofurans II and IV. – 4.1. 3-Bromo-2-phenylfuran (18). Method C: a soln. of 1.0 g (4.27 mmol) of 5 in dioxane was treated wit 2N aq. HBr at 50° for 24 h. FC on SiO₂ with AcOEt/hexane 1:3 and bulb-to-bulb distillation $(150^{\circ}/0.08 \text{ mbar})$ afforded 540 mg (60.2%) of 18 as a colorless liquid. IR (film): 3150w, 3120w, 3057w, 1580w, 1510m, 1480m, 1449w, 1379w, 1186w, 1157w, 1056m, 949m, 883m, 764s, 669s, 663s. ¹H-NMR (CDCl₃, 250 MHz): 8.0–7.9, 7.5–7.3 (2m, 5 arom. H); 7.42, 6.53 (2d, J = 1.9, H–C(5), H–C(4)). MS: 224, 222 (100, M^+), 195, 193 31), 115 (84). Anal. calc. for C₁₀H₇BrO (223.07): C 53.84, H 3.16, Br 35.82; found: C 53.82, H 3.20, Br 35.99. Method D: a soln. of 1.0 g (4.27 mmol) of 5 in toluene was treated with 4N aq. HBr at 50° for 2 h to yield, after chromatography and distillation (see above), 830 mg (92.7%) of 18 as a colorless liquid.

4.2. 3-Bromo-2-pentylfuran (19). A soln. of 2.0 g (8.76 mmol) of 6 in dioxane was treated according to Method C with 4N aq. HBr at 40° for 3.5 h to afford 1.90 g (96.7%) of 19 after FC on SiO₂ with AcOEt/hexane 1:4. Bulb-to-bulb distillation (155°/16 mbar) gave 1.55 g (81.5%) of 19 as a colorless liquid. IR (film): 3127w, 2923s, 2861s, 1597w, 1507m, 1461w, 1180w, 1140m, 1041w, 775s. ¹H-NMR (CDCl₃, 250 MHz): 7.25, 6.34 (2d, J = 2.0, H–C(5), H–C(4)); 2.63 (t, J = 7.3, 2 aliph. H); 1.75–1.55, 1.4–1.2, 0.95–0.85 (3m, 9 aliph. H). MS: 218, 216 (49, M^+), 161, 159 (100), 137 (53), 81 (85), 51 (78). Anal. calc. for C₉H₁₃BrO (217.11): C 49.79, H 6.04, Br 36.80; found: C 50.17, H 6.15, Br 37.20.

4.3. 3-Bromo-2-octylfuran (20). A soln. of 4.0 g (14.79 mmol) of 7 in dioxane was treated according to *Method* C with 4N aq. HBr at 50° for 6 h to yield 3.80 g (99%) of 20, after FC on SiO₂ with AcOEt/hexane 1:7. Bulb-to-bulb distillation (150°/0.1 mbar) gave 2.90 g (75.7%) of 20 as a colorless liquid. IR (film): 3127w, 2917s, 2854s, 1597w, 1556w, 1508w, 1462w, 1347m, 1188w, 1138m, 1059w, 975w. ¹H-NMR (CDCl₃, 250 MHz): 7.25, 6.34 (2*d*, J = 2.0, H–C(4), H–C(5)); 2.62 (t, J = 8.0, 2 aliph. H); 1.8–1.5, 1.4–1.15, 0.95–0.8 (3*m*, 15 aliph. H). MS: 260,258 (15, M^{++}), 179 (38), 161,159 (100), 81 (66). Anal. calc. for C₁₂H₁₉BrO (259.19): C 55.61, H 7.39, Br 30.83; found: C 55.66, H 7.43, Br 30.81.

4.4. 3-Chloro-2-octylfuran (21). A soln. of 2.0 g (7.40 mmol) of 7 in dioxane was treated according to *Method C* with 4N aq. HCl at 50° for 4 h to yield 1.52 g (95.7%) of 21, after FC on SiO₂ with Et₂O/hexane 1:7. Bulb-to-bulb distillation (130°/0.1 mbar) gave 1.14 g (72.2%) of 21 as a colorless liquid. IR (film): 2960m, 2927s, 2885m, 1605m, 1515m, 1470w, 1205w, 1145w, 995w, 724w. ¹H-NMR (CDCl₃, 250 MHz): 7.23, 6.30 (2d, J = 2.0, H–C(5), H–C(4)); 2.62 (t, J = 7.3, 2 aliph. H); 1.7–1.5, 1.4–1.15, 0.95–0.8 (3m, 15 aliph. H). MS: 214 (14, M^{++}), 179 (25), 115 (100). Anal. calc. for C₁₂H₁₉ClO (214.73): C 67.12, H 8.92, Cl 16.51; found: C 67.47, H 9.08, Cl 16.32.

4.5. 4-Bromo-2-phenylfuran (22). A soln. of 400 mg (2.5 mmol) of 13 in toluene was treated according to *Method D* with 4N aq. HBr at 50° for 3 h to yield, after FC on SiO₂ with Et₂O/hexane 1:5, 530 mg (95%) of 22 as a white solid. M.p. 41–42°. IR (KBr): 3112w, 3033w, 1603w, 1566w, 1513w, 1474w, 1276w, 1069w, 1019w, 930m, 909m, 803w, 764s, 680s, 585m. ¹H-NMR (CDCl₃, 250 MHz): 7.7–7.6 (*m*, 2 arom. H); 7.46, 6.68 (2*d*, J = 0.8, H–C(3), H–C(5)); 7.45–7.25 (*m*, 3 arom. H). MS: 224, 222 (50, M^{+-}), 143 (17), 115 (100). Anal. calc. for C₁₀H₇BrO (223.07): C 53.84, H 3.16, Br 35.82; found: C 53.92, H 3.12, Br. 35.45.

4.6. 4-Iodo-2-phenylfuran (23). A soln. of 170 mg (1.06 mmol) of 13 in toluene was treated according to *Method D* with 2N aq. HI [14] to yield, after FC on SiO₂ with Et₂O/hexane 1:5, 220 mg (77%) of 23 as a white solid (which turns red after a while, even in the freezer). M.p. 64–65°. IR (KBr): 3110w, 3031w, 2923w, 1604w, 1563w, 1502w, 1423m, 1441m, 1272m, 1136w, 1067m, 1013m, 905s, 793m, 760s, 687s, 582s. ¹H-NMR (CDCl₃, 250 MHz): 7.7–7.55 (m, 2 arom. H); 7.46, 6.72 (2d, J = 0.7, H–C(3), H–C(5)); 7.45–7.25 (m, 3 arom. H). MS: 270 (100, M^{++}), 143 (61), 115 (99), 77 (40), 63 (28), 51 (20).

4.7. 3-Chloro-2-methyl-5-phenylfuran (24). A soln. of 2.0 g (11.48 mmol) of 14 in dioxane was treated according to Method C with 4N aq. HCl at 50° for 4.5 h to yield, after FC on SiO₂ with Et₂O/hexane 1:5, 2.0 g (90.5%) of 24 as a slightly yellow oil. IR (film): 3070w, 3040w, 2930w, 1601m, 1487m, 1088s, 1026m, 757s. ¹H-NMR (CDCl₃, 250 MHz): 7.65–7.55, 7.45–7.2 (2 m, 5 arom. H); 6.56 (s, H–C(4)); 2.34 (s, CH₃–C(2)). Anal. calc. for C₁₁H₉Cl0 (192.64): C 68.58, H 4.71, Cl 18.40; found: C 68.55, H 4.92, Cl 18.08.

4.8. 3-Bromo-2-methyl-5-phenylfuran (25). A soln. of 2.0 g (11.48 mmol) of 14 in dioxane was treated according to *Method C* with 4N aq. HBr to yield, after FC on SiO₂ with Et₂O/hexane 1:3, 2.51 g (92.3%) of 25 as a pale yellow oil. IR (film): 3130w, 3060w, 2920w, 1597s, 1554m, 1487s, 1147m, 1075s, 1021s, 758s, 690s. ¹H-NMR (CDCl₃, 250 MHz): 7.65–7.55, 7.4–7.2 (2 m, 5 arom. H); 6.59 (s, H–C(4)); 2.35 (s, CH₃–C(2)). MS: 238, 236 (100, M^+), 195, 193 (17), 157 (26), 129 (24), 105 (43), 77 (96), 51 (35), 43 (43). Anal. calc. for C₁₀H₁₅BrO (231.13): C 51.97, H 6.54, Br 34.57; found: C 52.31, H 6.69, Br 34.56.

4.9. 3-Iodo-2-methyl-5-phenylfuran (26). A soln. of 2.0 g (11.48 mmol) of 14 in dioxane was treated according to *Method C* with 2N aq. HI [14] at 50° for 35 min to yield, after FC on SiO₂ with Et₂O/hexane 1:5, 2.95 g (90.5%) of 26 as a pale yellow oil. IR (film): 3120w, 3060w, 2910w, 1587m, 1551m, 1446m, 1143m, 1071m, 1014s, 799m. ¹H-NMR (CDCl₃, 250 MHz): 7.65–7.55, 7.45–7.2 (2m, 5 arom. H); 6.62 (s, H–C(4)); 2.40 (s, CH₃–C(2)). MS: 284 (100, M^{++}), 157 (16), 128 (19), 115 (27), 105 (62), 77 (39), 51 (28), 43 (17). Anal. calc. for C₁₁H₉IO (284.10): C 46.51, H 3.19, I 44.67; found: C 46.04, H 3.17, I 45.15.

4.10. 4-Chloro-2-(3,4,5-trimethoxyphenyl)furan (27). A soln. of 500 mg (2.0 mmol) of 15 in dioxane was treated according to Method C with 4N aq. HCl at 50° for 4 h to yield, after FC on SiO₂ with Et₂O/hexane 1:2, 462 mg (86%) as white solid. M.p. 81–82°. IR (KBr): 3140w, 2930w, 2835w, 1590m, 1575s, 1500s, 1418m, 1250s, 1242s, 1132s, 995m, 945m, 800m. ¹H-NMR (CDCl₃, 250 MHz): 7.44, 6.59 (2s, H–C(3), H–C(5)); 6.84 (s, 2 arom. H); 3.91, 3.87 (2s, 3 CH₃O). MS: 268 (100, M^+), 253 (83), 225 (22), 195 (20), 139 (15). Anal. calc. for C₁₃H₁₃ClO₄ (268.69): C 58.11, H 4.88, Cl 13.19; found: C 58.07, H 4.94, Cl 13.00.

4.11. 4-Bromo-2-(3,4,5-trimethoxyphenyl)furan (28). A soln. of 500 mg (2.0 mmol) of 15 in dioxane was treated according to Method C with 4N aq. HBr at 50° for 2.5 h to yield, after FC on SiO₂ with Et₂O/hexane 1:1, 580 mg (93%) of 28 as white solid. M.p. 73–74°. IR (KBr): 3120w, 3100w, 2935w, 2830w, 1595m, 1570m, 1495s, 1420m, 1300s, 1130s, 1005m, 835m. ¹H-NMR (CDCl₃, 250 MHz): 7.45, 6.63 (2d, J = 0.8, H–C(3), H–C(5)); 6.84 (s, 2 arom. H); 3.91, 3.87 (2s, 3 CH₃O). MS: 314, 312 (100, M^{++}), 299, 297 (97), 269 (19), 239 (22). Anal. calc. for C₁₃H₁₃BrO₄ (313.15): C 49.86, H 4.18, Br 25.52; found: C 49.87, H 4.18, Br 25.63.

4.12. 3-Chloro-2-methyl-5-(3,4,5-trimethoxyphenyl)furan (**29**). A soln. of 300 mg (1.14 mmol) of **16** in dioxane was treated according to *Method C* at 50° for 20 h to yield, after FC on SiO₂ with Et₂O/hexane 1:1, 260 mg (80.6%) of **29** as a white solid. M.p. 101–102°. IR (KBr): 3130w, 2940w, 1595m, 1500s, 1450m, 1420m, 1340m, 1245s, 1135s, 1100m, 1010m, 840m, 790m. ¹H-NMR (CDCl₃, 250 MHz): 6.80 (s, 2 arom. H); 6.51 (s, H–C(4)); 3.91, 3.86 (2s, 3 CH₃O); 2.35 (s, CH₃–C(2)). MS: 282 (100, M^{++}), 267 (88), 239 (15), 209 (15), 43 (27). Anal. calc. for C₁₄H₁₅Cl0₄ (282.72): C 59.48, H 5.35, Cl 12.54; found: C 59.20, H 5.35, Cl 12.21.

4.13. 3-Bromo-2-methyl-5-(3,4,5-trimethoxyphenyl)furan (**30**). A soln. of 1.0 g (3.78 mmol) of **16** in dioxane was treated according to Method C with 4N aq. HBr at 50° for 20 h to yield, after FC on SiO₂ with Et₂O/hexane 1:1 and crystallization from AcOEt/hexane, 1.02 g (82.4%) of **30** as a pale yellow solid. M.p. 94–95°. IR (KBr): 3131w,

2988*w*, 2939*w*, 1591*m*, 1554*w*, 1499*m*, 1416*m*, 1244*m*, 1129*s*, 1065*w*, 825*w*, 707*w*. ¹H-NMR (CDCl₃, 250 MHz): 6.80 (*s*, 2 arom. H); 6.54 (*s*, H–C(4)); 3.91, 3.86 (2*s*, 3 CH₃O); 2.36 (*s*, CH₃–C(2)). MS: 328, 326 (100, M^+), 311 (86), 285, 283 (18), 253 (25), 43 (50). Anal. calc. for C₁₄H₁₅BrO₄ (327.17): C 51.40, H 4.62, Br 24.42; found: C 51.39, H 4.64, Br 24.75.

4.14. 3-Iodo-2-methyl-3-(3,4,5-trimethoxyphenyl)furan (31). A soln. of 6.0 g (22.7 mmol) of 16 in dioxane was treated according to Method C with 2N aq. HI [14] at 50° for 30 min to yield, after FC on SiO₂ with AcOEt/hexane 1:8 and crystallization from AcOEt/hexane, 7.50 g (88.4%) of 31 as a brownish solid. M.p. 131–132°. IR (KBr): 3112w, 2948w, 2835w, 1595m, 1553m, 1498s, 1461m, 1422m, 1240m, 1131s, 1000m, 848w, 821w, 765w, 674w. ¹H-NMR (CDCl₃, 250 MHz): 6.80 (s, 2 arom. H); 6.57 (s, H–C(4)); 3.91, 3.86 (2s, 3 CH₃O); 2.41 (s, CH₃–C(2)). MS: 374 (100, M^{++}), 359 (67), 331 (11), 219 (14), 43 (17). Anal. calc. for C₁₄H₁₅IO₄ (374.18): C 44.94, H 4.04, I 33.92; found: C 44.79, H 4.04, I 33.67.

4.15. 3-Bromo-2-methyl-5-pentylfuran (32). A soln. of 400 mg (2.38 mmol) of 17 in toluene was treated according to Method D with 4N aq. HBr at 50° for 4 h: 450 mg (81.1%) of 32 as a colorless oil, after FC on SiO₂ with Et₂O/hexane 1:7 and bulb-to-bulb distillation (180°/19 mbar). IR (film): 2958m, 2928s, 1614w, 1575w, 1461w, 1380w, 1225m, 1041m, 987w, 935w, 786w. ¹H-NMR (CDCl₃, 250 MHz): 5.93 (*s*, H–C(4)); 2.53 (*t*, *J* = 7.5, 2 aliph. H); 2.23 (*s*, CH₃–C(2)); 1.7–1.5, 1.4–1.25, 0.95–0.85 (3m, 9 aliph. H). MS: 232, 230 (17, M^{+1}), 175, 173 (100), 43 (29). Anal. calc. for C₁₀H₁₅BrO (231.13): C 51.97, H 6.54, Br 34.57; found: C 52.31, H 6.69, Br 34.56.

4.16. 3-Iodo-2-methyl-5-pentylfuran (33). A soln. of 2.0 g (11.89 mmol) of 17 in dioxane was treated with 2N aq. HI [14] at r.t. for 1 h: 2.51 g (75.9%) of 33 as a pale yellow oil after FC on SiO₂ with Et₂O/hexane 1:4 and bulb-to-bulb distillation (185°/0.04 mbar). IR (film): 2955s, 2929s, 2858m, 1602w, 1571m, 1462w, 1380w, 1218w, 1177w, 1128w, 1087w, 1029m, 983m, 935w, 789w. ¹H-NMR (CDCl₃, 250 MHz): 5.95 (s, H–C(4)); 2.54 (t, J = 7.5, 2 aliph. H); 2.28 (s, CH₃–C(2)); 1.7–1.5, 1.4–1.25, 0.95–0.85 (3m, 9 aliph. H). MS: 278 (30, M^{+-}), 221 (100), 43 (21). Anal. calc. for C₁₀H₁₅IO (278.13): C 43.18, H 5.44, I 45.63; found: C 43.01, H 5.51, I 45.91.

5. 4*H*-Pyran-4-one Derivative 35. -5.1. 5-*Hydroxy-5-methylhex-2-ynophenone* (34) [15]. To a soln. of 5.0 g (50.94 mmol) of 2-methylpent-4-yn-2-ol (prepared according to [19]) in THF (150 ml), 66.9 ml of BuLi soln. (1.6m in hexane) were added at -60° . The mixture was stirred at 0° for 1 h, and 7.03 g (66.24 mmol) of benzaldehyde (2) were added at -78° . The mixture was allowed to slowly warm up to 0° , stirred at 0° for 2 h, and quenched with sat. NH₄Cl soln. (100 ml), ice (100 g), and Et₂O (150 ml). The aq. layer was extracted with Et₂O (2 × 100 ml), the combined org. fractions were washed with sat. brine (200 ml), dried (MgSO₄) and the solvents removed. The residue was dissolved in CH₂Cl₂ (10 ml) and added at 0° to a mechanically stirred suspension of 133 g of MO₂ in CH₂Cl₂ (200 ml). The mixture was stirred at 0° for 30 min, filtered through MgSO₄, and evaporated. The residue was chromatographed on SiO₂ (250 g) with Et₂O/hexane 1:1: 7.3 g (70.9%) of **34** as a pale yellow oil. IR (film): 3421w (br.), 2933w, 2240w, 2202m, 1640s, 1598w, 1451w, 1313m, 1268s, 1169w, 900w, 702s. ¹H-NMR (CDCl₃, 250 MHz): 8.2–8.15, 7.65–7.55, 7.55–7.45 (3m, 5 arom. H); 2.71 (s, 2 H–C(4)); 2.17 (s, OH); 1.43 (s, CH₃–C(5)). MS: 144 (100), 115 (23), 105 (23), 77 (25), 66 (28), 59 (83).

5.2. 2,2-Dimethyl-6-phenyl-2,3-dihydro-4H-pyran-4-one (**35**) [15]. A soln. of 4.46 g (22.03 mmol) of **34** in dioxane was treated according to *Method C* at 90° for 2.5 h: 4.23 g (94.8%) of **35** as a white solid after FC on SiO₂ with Et₂O/hexane 1:1. M.p. $36-37^{\circ}$. IR (KBr): 3064w, 2978w, 1661s, 1599s, 1571s, 1492w, 1448m, 1367s, 1278m, 1251m, 1055m, 770m, 693m. ¹H-NMR (CDCl₃, 250 MHz): 7.8-7.7, 7.5-7.4 (2m, 5 arom. H); 5.99 (s, H-C(3)); 2.59 (s, 2 H–C(5)); 1.55 (s, 2 CH₃–C(6)). MS: 202 (42, M^{++}), 187 (37), 105 (100), 77 (37), 69 (49), 56 (23). Anal. calc. for C₁₃H₁₄O₂ (202.25): C 77.20, H 6.98; found: C 76.87, H 6.96.

6. Acetylenic Ketones 37 and 38. -6.1.2-(2-Ethynylphenoxy)-3,4,5,6-tetrahydro-2H-pyran (36). To a soln. of 15.0 g (0.127 mol) of 2-ethynylphenol [16] in AcOEt (25 ml) at 0°, 3 drops of conc. aq. HCl and 23 ml of 3,4-dihydro-2H-pyran were added. The mixture was heated at 50° for 48 h, cooled to r.t., and quenched with sat. NaHCO₃ soln. (50 ml) and Et₂O (100 ml). The aq. phase was extracted with Et₂O (2 × 50 ml), the combined org. fractions were washed with sat. brine (2 × 50 ml), dried (MgSO₄) and the solvents removed. The residue was chromatographed on SiO₂ (400 g) with Et₂O/hexane 1:5: 23.4 g (91%) of 36 as a colorless liquid. IR (film): 3283m, 2945m, 2874w, 2105w, 1576w, 1485s, 1447m, 1356w, 1282m, 1181m, 1119s, 1032m, 960s, 873w, 755s. ¹H-NMR (CDCl₃, 250 MHz): 7.5-7.4, 7.35-7.2, 7.15-7.1, 7.0-6.9 (4m, 4 arom. H); 5.6-5.5 (m, OCHO); 4.05-3.8, 3.65-3.55 (2m, CH₂O); 3.25 (s, CH=C); 2.2-1.5 (m, 6 aliph. H). MS: 202 (6, M⁺), 118 (21), 85 (100), 67 (22), 57 (25), 43 (24). Anal. calc. for C₁₃H₁₄O₂ (202.25): C 77.20, H 6.98; found: C 77.06, H 7.18.

6.2. 3 - (2-Hydroxyphenyl) - 3', 4', 5' - trimethoxyprop-2-ynophenone (37). A soln. of 2.0 g (9.89 mmol) of 36 in THF was treated according to *Method B* with 10: 2.3 g (74.5%) of 37 as a white solid after recrystallization from AcOEt/hexane. M.p. > 135° (dec.). IR (KBr): 3344m, 3269w, 2998w, 2941w, 2185s, 1619m, 1577s, 1501m, 1453m, 1415m, 1335s, 1235m, 1161m, 1003w, 739m. ¹H-NMR (CDCl₃, 250 MHz): 7.55-7.45 (m, 1 arom. H); 7.52 (s, 2

arom. H); 7.45–7.35, 7.05–6.9 (2*m*, 3 arom. H); 6.88 (br. *s*, OH); 3.95 (*s*, 3 CH₃O). MS: 312 (100, *M*⁺), 297 (12), 281 (12), 281 (12), 269 (14), 168 (28), 143 (23), 89 (13). Anal. calc. for C₁₈H₁₆O₅ (312.32): C 69.22, H 5.16; found: C 68.82, H 5.36.

6.3. (E)-5-(2-Hydroxyphenyl)-1-phenylpent-1-en-4-yn-3-one (**38**). A soln. of 2.0 g (9.89 mmol) of **36** in THF was treated according to *Method B* with cinnamic aldehyde: 2.0 g (81%) of **36** as a pale yellow solid, after FC on SiO₂ (200 g) with Et₂O/hexane 1:1 and crystallization from AcOEt/hexane. M.p. > 105° (dec.). IR (KBr): 3208m (br.), 3055w, 2223w, 2183s, 1625s, 1590s, 1499w, 1450m, 1343m, 1325m, 1182m, 1100w, 981w, 751m. ¹H-NMR (CDCl₃, 250 MHz): 7.95, 6.89 (2d, J = 16.1, H–C(1), H–C(2)); 7.65–7.35 (m, 7 arom. H); 7.05–6.85 (m, 2 arom. H, OH). MS: 248 (48, M^{+}), 247 (47), 231 (100), 219 (31), 191 (24), 103 (27), 89 (32), 77 (32). Anal. calc. for C₁₇H₁₂O₂ (248.28): C 82.24, H 4.87; found: C 82.28, H 4.98.

7. Flavone 39 and Styrylchromone 40. -7.1.3',4',5'-*Trimethoxyflavone* (=2-(3,4,5-*Trimethoxyphenyl*)-4 H-[1]benzopyran-4-one; **39**). A soln. of 300 mg (0.96 mmol) of **37** in dioxane was treated according to *Method C* with 4N aq. HBr at 65° for 3.5 h to yield 240 mg (80%) of **39** as a pale yellow solid, after recrystallization from EtOH/H₂O. M.p. 174–175°. IR (KBr): 3070w, 2941w, 2839w, 1639s, 1603m, 1568m, 1506m, 1470m, 1419s, 1372m, 1338m, 1245m, 1127s, 1006w, 771w, 750w. ¹H-NMR (CDCl₃, 250 MHz): 8.3–8.2, 7.75–7.65, 7.6–7.55, 7.5–7.4 (4m, 4 arom. H); 7.15 (s, 2 arom. H); 6.79 (s, H–C(3)); 3.97, 3.94 (2s, 3 CH₃O). MS: 312 (100, M^+), 297 (42), 269 (18), 121 (21). Anal. calc. for C₁₈H₁₆O₅ (312.32): C 69.22, H 5.16; found: C 68.99, H 5.20.

7.2. 2-Styryl-4 H-[1]benzopyran-4-one (40) [20]. A soln. of 300 mg (1.21 mmol) of 38 in dioxane was treated according to Method C with 4N aq. HBr at 80° for 2 h to yield 235 mg (82%) of 40 as a pale yellow solid. M.p. 139–140°. IR (KBr): 3372w, 3057w, 3020w, 1652s, 1624s, 1560m, 1404s, 1392s, 1327w, 1323w, 1124w, 969m, 755m. ¹H-NMR (CDCl₃, 250 MHz): 8.25–8.15 (m, H–C(5)); 7.75–7.3 (m, 8 arom. H); 7.62, 6.79 (2d, J = 16.1, 2 olef. H); 6.34 (s, H–C(3)). MS: 248 (63, M^{+}), 247 (100), 231 (43), 128 (62), 92 (24). Anal. calc. for C₁₇H₁₂O₂ (248.28): C 82.24, H 4.87; found: C 82.18, H 5.07.

REFERENCES

- [1] L.I. Vereshchagin, R.I. Katkevich, Usp. Khim. 1969, 38, 1964.
- [2] L.I. Vereshchagin, R.L. Bol'shedvorska, Usp. Khim. 1973, 42, 511.
- [3] J. Chauvelier, Ann. Chim. Fr. 1966, 1721.
- [4] K. Bowden, E. A. Braude, E. R. H. Jones, J. Chem. Soc. 1946, 945.
- [5] W.D. Rudorf, R. Schwarz, Tetrahedron Lett. 1987, 4267.
- [6] W. Ried, E. König, Liebigs Ann. Chem. 1972, 755, 24.
- [7] M. Karpf, Angew. Chem. 1986, 98, 413; J. Huguet, M. Karpf, A.S. Dreiding, Tetrahedron Lett. 1983, 4177.
- [8] D. Obrecht, B. Weiss, Helv. Chim. Acta 1989, 72, 117.
- [9] P. Bosshard, C.H. Eugster, Adv. Heterocycl. Chem. 1966, 7, 378; F.M. Dean; ibid. 1982, 30, 167; ibid. 1983, 31, 238.
- [10] a) Y. Fukuyama, Y. Kawashima, T. Miwa, T. Tokorayama, Synthesis 1974, 443; b) R. E. Lutz, M. G. Reese, J. Am. Chem. Soc. 1959, 81, 127; c) R. E. Larock, C.-L. Liu, J. Org. Chem. 1983, 48, 2151; d) D. Caine, W. D. Samuels, Tetrahedron Lett. 1980, 4057; e) H. Reich, R. E. Olson, J. Org. Chem. 1987, 52, 2315.
- [11] N. Dinh Ly, M. Schlosser, Helv. Chim. Acta 1977, 60, 2085.
- [12] T.L. Gilchrist, D.P.J. Pearson, J. Chem. Soc., Perkin Trans. 1 1976, 989.
- [13] W.C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [14] 'Reagentienanhang in Organikum', Ed. K. Schwetlick, 13th edn., VEB-Verlag, Berlin, 1974, p. 713.
- [15] L.I. Vereshchagin, L.D. Gavrilov, E.I. Titova, L.G. Tikhonova, S.R. Buzilova, Khim. Geterotsikl. Soedin 1976, 1471.
- [16] N. Nakagawa, J. Chem. Soc. Jpn. 1951, 72, 1471.
- [17] W.H. Gerwick, A. Lopez, G.D. van Duyne, J. Clardy, W. Ortiz, A. Bay, Tetrahedron Lett. 1986, 1979.
- [18] a) A. Gorgues, A. LeCoq, Tetrahedron Lett. 1979, 4825; b) H. Esterbauer, Monatsh. Chem. 1967, 98, 1994;
 c) H. Esterbauer, ibid. 1971, 102, 824.
- [19] L. Miginiac, Ann. Chim. Fr. 1961, 1071.
- [20] H. L. Gaggad, K. N. Wadokar, B. J. Ghiya, Ind. J. Chem. 1985, 24B, 1244.